

Power distribution blocks

Incoming cables	Outgoing cables	Part No.		
Qty	Size $\left(\mathrm{mm}^{2}\right)$	Qty	Size $\left(\mathrm{mm}^{2}\right)$	

A space saving and cost saving alternative to DIN-Rail mount terminals.
Panel or DIN-Rail mounting
IP20 finger proof terminals
Plated brass block accepts aluminium or copper cables

Plated brass block accepts aluminium or copper cables				
3	$2.5-16$	4	$2.5-6$	FTG-1/080
1	$10-35$	6	$2.5-16$	
1	$6-16$			FTG-1/125
1		5	$2.5-16$	
	$35-120$	4	$2.5-10$	FTG-1/250

Power distribution block 500 mm^{2} - $\mathbf{2 \times 3 0 0} \mathrm{mm}^{2}$ Cross section

| | $\mathrm{Cu} / \mathrm{Al}$ | | Rated |
| :---: | :---: | :---: | :---: | :---: | Part No.

Sector shaped Al-conductors $90 \mathrm{~mm}^{2}-300 \mathrm{~mm}^{2}$ have to be pre-rounded with a crimping-tool.

Compact Power Distribution Block $1 \mathrm{xCu} / \mathrm{Al}$ input $500 \mathrm{~mm}^{2}$ max $2 \mathrm{xCu} / \mathrm{Al}$ outputs $300 \mathrm{~mm}^{2}$ max

MiniClic System

Busbar mount and connection

Connection	No. of outputs	Current rating total \& per output	Part No.
Busbar	10	$250 / 50 \mathrm{~A}$	MC22001

Panel mount with incoming terminal

Connection	No. of outputs	Current rating total \& per output	Part No.
$25-120 \mathrm{~mm}^{2}$	10	$250 / 50$ A	MC22002
$25-120 \mathrm{~mm}^{2}$	50	$250 / 50 \mathrm{~A}$	MC120021

MiniClic cube

Connection	No. of outputs	Current rating total \& per output	Part No.
$1.5-10 \mathrm{~mm}^{2}$	Grey	50 A	MC00001
$1.5-10 \mathrm{~mm}^{2}$	Blue	50 A	MC00001N
$1.5-10 \mathrm{~mm}^{2}$	Green	50 A	MC00001PE
$1.5-10 \mathrm{~mm}^{2}$	Red	50 A	MC00001R

TECHNICAL INFORMATION

Current transformers

Type	ASK**
Standards	VDO 414 Part 1; DIN42600; VBG4; IEC60044-1
Construction	
Case	
Flammability	Ultrasonically welded Polycarbonate
Terminals	Self-extinguishing to UL94Vo
Environment	Nickel Plated Brass
Temperature	For dry indoor use.
Ratings	$-5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Voltage maximum	
Frequency	0.72 kV
Nominal Thermal Short Time Current	$50 / 60 \mathrm{~Hz}$
Insulation	$60 \times$ In
Supply	Class E
Foot Mountings	
Bar Mount Screws	$2(12$ with ASK128)

Standoff insulators

Type		DB25	DB34	DB50	DB65
Operating Temperature		$-40^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$			
Flammability		to UL94VO			
AC Internal Flashover Voltage	kV	20	30	40	40
AC Surface Flashover Voltage	kV	7	10	12	15
Twisting Stress	DN X m	3	5	6	6
Compressive Stress	DN	2100	6500	6800	8300
Cantilever Stress	DN	180	450	450	700
Tensile Stress	DN	300	800	850	1500

Power distribution blocks

			FTG-1/080	FTG-1/125	FTG-1/250
Operational Voltage		VAC	600	600	600
Current Rating Cu/AI		A	85 / 66	130 / 103	$300 / 260$
Short Cct Peak - Ipk		kA	2.7	30	51
Short Cct 1 second - Icw		kA	1.9	4.4	21
Input connections	Qty / Size		$1 \times 2.5-16 \mathrm{~mm}^{2}$	$1 \times 10-35 \mathrm{~mm}^{2}$	$1 \times 35-120 \mathrm{~mm}^{2}$
	Tool		Pozi or flat screwdriver	4 mm Allen Key	6 mm AllenKey
	Torque	Nm	1.5	3.5	19
Output connections without ferrules	Qty / Size		$\begin{aligned} & 2 \times 2.5-16 \mathrm{~mm}^{2} \\ & 4 \times 2.5-6 \mathrm{~mm}^{2} \end{aligned}$	$\begin{gathered} 1 \times 6-16 \mathrm{~mm}^{2} \\ 6 \times 2.5-16 \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} 4 \times 2.5-10 \mathrm{~mm}^{2} \\ 5 \times 2.5-16 \mathrm{~mm}^{2} \\ 2 \times 6.35 \mathrm{~mm}^{2} \end{gathered}$
	Tool		Pozi or flat screwdriver	Pozi or flat screwdriver	Flat screwdriver
	Torque	Nm	1.5 / 0.8	3.5 / 2.0	18/18 / 31
Mounting			DIN-Rail or base mounting with $2 \times \mathrm{M} 5$ screws		
Protection			IP20	IP20	IP20
Dimensions (LxWxH) mm			$66 \times 27 \times 47$	$74 \times 27 \times 47$	$96 \times 45 \times 49$

Power distribution block 500mm ${ }^{2}$ - $2 \times 300 \mathrm{~mm}^{2}$

Technical data

Sector shaped Al-conductors $90 \mathrm{~mm}^{2}-300 \mathrm{~mm}^{2}$ have to be pre-rounded with a crimping-tool.
Article numbers on request.

IP rating

Degrees of protection provided by enclosures (IP-Code) according to IEC/EN 60529:2000-09 (extract)

1st digit	Protection against contact	Protection against ingress of objects	2nd digit	Protection against harmful ingress of water
0	No protection	No protection	0	No protection
1	Protected against access to dangerous parts with the back of the hand	Protected against solid foreign object size $>50 \mathrm{~mm}$	1	Protected against dripping water
2	Protected against access to dangerous parts with a finger	Protected against solid foreign object size $>12.5 \mathrm{~mm}$	2	Protected against dripping water when tilted up to 15°
3	Protected against access to dangerous parts with a tool	Protected against solid foreign object size $>2.5 \mathrm{~mm}$	3	Protected against spraying water
4	Protected against access to dangerous parts with a wire	Protected against solid foreign object size $>1 \mathrm{~mm}$	4	Protected against splashing water
5	Protected against access to dangerous parts with a wire	Protected against dust	5	Protected against water jets
6	Protected against access to dangerous parts with a wire	Dust tight	6	Protected against powerful water jets
-	-	-	7	Protected against temporary immersion in water
-	-	-	8	Protected against continuous immersion in water

Utilization categories for fuse combination units in accordance with IEC/EN 60947-3:2010-02, VDE 0660 Part 107
AC

Utilization category	Typical applications	Verification of electrical endurance							Verification of making and breaking capacities						
		Make				Break			Make				Break		
		$\begin{aligned} & \mathrm{I}_{\mathrm{e}} \\ & \mathrm{~A} \end{aligned}$	1	U	$\begin{gathered} \cos \\ \phi \end{gathered}$	I_{c}	U_{r}	$\begin{gathered} \cos \\ \varnothing \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{e}} \\ & \mathrm{~A} \end{aligned}$	1	U	$\stackrel{\cos }{\phi}$	I_{c}	U_{r}	$\begin{gathered} \cos \\ \Phi \end{gathered}$
			le	$U_{\text {e }}$		1 e	$U_{\text {e }}$			l	U_{e}		l_{e}	U_{e}	
$A C-20 A(B){ }^{1)}$	Connecting and disconnecting under no-load conditions	3)	2)	2)	2)	2)	2)	2)	3)	2)	1.05	2)	2)	1.05	2)
$A C-21 A(B){ }^{1)}$	Switching of resistive loads, including slight overloads	3)	1	1	0.95	1	1	0.95	3)	1.5	1.05	0.95	1.5	1.05	0.95
$A C-22 A(B){ }^{1)}$	Switching of mixed resistive and inductive loads, including slight overloads	3)	1	1	0.8	1	1	0.8	3)	3	1.05	0.65	3	1.05	0.65
$A C-23 A(B){ }^{1)}$	Switching of motor loads and other highly inductive loads	3)	1	1	0.65	1	1	0.65	4)	10	1.05	0.45	8	1.05	0.45
									5)	10	1.05	0.35	8	1.05	0.35

DC

Utilization category	Typical applications	Verification of electrical endurance							Verification of making and breaking capacities						
		Make				Break			Make				Break		
		I_{e}	I	U	$\begin{aligned} & \mathrm{L} / \mathrm{R} \\ & \mathrm{~ms} \end{aligned}$	I_{C}	U_{r}	$\begin{aligned} & \mathrm{L} / \mathrm{R} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{e}} \\ & \mathrm{~A} \end{aligned}$	I	U	$\begin{aligned} & \mathrm{L} / \mathrm{R} \\ & \mathrm{~ms} \end{aligned}$	I_{c}	U_{r}	$\begin{gathered} \mathrm{L} / \mathrm{R} \\ \mathrm{~ms} \end{gathered}$
		A	le	U_{e}		le	$U_{\text {e }}$			le	$U_{\text {e }}$		l_{e}	$U_{\text {e }}$	
DC-20A(B) ${ }^{1)}$	Connecting and disconnecting under no-load conditions	3)	2)	2)	2)	2)	2)	2)	3)	2)	1.05	2)	2)	1.05	2)
DC-21A(B) ${ }^{1)}$	Switching of resistive loads, including slight overloads	3)	1	1	1	1	1	1	3)	1.5	1.05	1	1.5	1.05	1
DC-22A(B) ${ }^{1)}$	Switching of mixed resistive and inductive loads, including overloads (e.g. shunt motors)	3)	1	1	2	1	1	2	3)	4	1.05	2.5	4	1.05	2.5
DC-23A(B) ${ }^{1)}$	Switching of highly inductive loads (e.g. series motors)	3)	1	1	0.75	1	1	0.75	3)	4	1.05	15	4	1.05	15

I Making current
$I_{c} \quad$ Breaking current
l_{e} Rated operational current
U Voltage
U_{e} Rated operational voltage

1) A: Frequent actuation, B: Occasional actuation
2) If the switching device has a making and/or breaking capacity, the values for the current and the power factor (time constants) must be stated by the manufacturer.
3) All values
4) $I_{e} \leq 100 \mathrm{~A}$
5) $I_{e}>100 \mathrm{~A}$
